Abstract

IntroductionImplantation of mesenchymal stem cells (MSCs) has recently been reported to repair tissue injuries through anti-inflammatory and immunosuppressive effects. We established dedifferentiated fat (DFAT) cells that show identical characteristics to MSCs.MethodsWe examined the effects of 106 of DFAT cells infused through renal artery or tail vein on monoclonal antibody (mAb) 1-22-3-induced glomerulonephritis (as an immunological type of renal injury) and adriamycin-induced nephropathy (as a non-immunological type of renal injury) in rats. The mAb 1-22-3-injected rats were also implanted with 106 of DFAT cells transfected with TSG-6 siRNA through tail vein.ResultsAlthough DFAT cells transfused into blood circulation through the tail vein were trapped mainly in lungs without reaching the kidneys, implantation of DFAT cells reduced proteinuria and improved glomerulosclerosis and interstitial fibrosis. Implantation of DFAT cells through the tail vein significantly decreased expression of kidney injury molecule-1, collagen IV and fibronectin mRNAs, whereas nephrin mRNA expression was increased. Implantation of DFAT cells did not improve adriamycin-induced nephropathy, but significantly decreased the glomerular influx of macrophages, common leukocytes and pan T cells. However, the glomerular influx of helper T cells, was increased. Implantation of DFAT cells decreased expression of interleukin (IL)-6 and IL-12β mRNAs and increased expression of TNF-stimulated gene (TSG)-6 mRNA in renal cortex from mAb 1-22-3-injected rats. The basal level of TSG-6 protein was significantly higher in DFAT cells than in fibroblasts. Expression of TSG-6 mRNA in MCs cocultured with DFAT cells was significantly higher than in mesangial cells or DFAT cells alone. Systematic implantation of DFAT cells with TSG-6 siRNA through tail vein did not improve proteinuria, renal dysfunction and renal degeneration in the mAb 1-22-3-injected rats.ConclusionSystematic implantation of DFAT cells effectively ameliorated mAb 1-22-3-induced glomerulonephritis through immunosuppressive effects accompanied by the suppression of macrophage infiltration and expression of IL-6, IL-10 and IL-12β, and increased production of serum and renal TSG-6 that improved the mAb 1-22-3-induced renal degeneration by the immunosuppressive effects of TSG-6. Thus DFAT cells will be suitable cell source for the treatment of immunological progressive renal diseases.Electronic supplementary materialThe online version of this article (doi:10.1186/s13287-015-0069-2) contains supplementary material, which is available to authorized users.

Highlights

  • Implantation of mesenchymal stem cells (MSCs) has recently been reported to repair tissue injuries through anti-inflammatory and immunosuppressive effects

  • dedifferentiated fat (DFAT) cells transfused into blood circulation through the tail vein were trapped mainly in lungs without reaching the kidneys, implantation of DFAT cells reduced proteinuria and improved glomerulosclerosis and interstitial fibrosis

  • Expression of TNF-stimulated gene (TSG)-6 mRNA in Mesangial cells (MCs) cocultured with DFAT cells was significantly higher than in mesangial cells or DFAT cells alone

Read more

Summary

Introduction

Implantation of mesenchymal stem cells (MSCs) has recently been reported to repair tissue injuries through anti-inflammatory and immunosuppressive effects. Regarding regenerative medicines for chronic renal failure, the implantation of cells, including stem cells and progenitor cells, has been experimentally applied in treatments for progressive renal diseases [1]. There have been no clinical trials of cell implantation for progressive renal diseases. This is because the complexity of the kidney structure prevents efficient regeneration in response to single-source cell implantation. Mesenchymal stem cells (MSCs) have arisen to become a candidate cell source in regenerative medicine for kidney diseases

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.