Abstract

Depleted hydrocarbon reservoirs are attractive targets for short-term gas storage with frequent injection and production cycles. Optimum well completion and injection-storage-production design in depleted reservoirs would require an understanding of important rock mechanical issues. These include drilling and completion challenges of new wells in low-pressure reservoirs accounting for potential rock fatigue due to cyclic injection/depletion and loading and unloading, and determination of maximum sustainable storage pressures that would avoid fracturing and fault reactivation. This paper describes a case study from a coal seam gas project considered for supply to a liquefied natural gas plant in Australia. The paper demonstrates a systematic approach for geomechanical risk assessments for short-term gas storage in depleted sandstone reservoirs. Depleted sandstone gas reservoirs at a depth of 1,000 m with existing pressures of 150–300 psi are considered in this study. Historical and new well data including cores, well logs, drilling, and field data such as injection and minifracture (minifrac) tests are used to develop a field-specific geomechanical model. Field data and laboratory measurements of rock mechanical properties are used to define the stress path factors and the change in in situ stress with depletion and injection in sandstone reservoirs in the study area. Rock mechanics tests on representative core plugs under cyclic loading and unloading simulating operating depletion and injection pressure conditions are used to assess the level of rock fatigue and rock weakening under cyclic loading. Geomechanical analyses show that despite a low fracture gradient in depleted reservoirs and the presence of non-depleted overburden rocks, new high-angled wells can be drilled safely with a relatively low mud weight in the non-depleted sections and with air in the reservoir section. Fracturing and faulting assessments confirm the critical pressures for fault reactivation and fracturing of intact rocks are beyond the planned storage pressures, and a maximum pressure of 200–300 psi beyond the initial reservoir pressures may be possible from fracturing or fault reactivation aspects. Sand production prediction evaluations indicate that new injection-production wells can be completed with no downhole sand control due to a very low risk of sanding even after considering rock weakening associated with cyclic loading. The methodology and overall workflow presented in this paper can be applied when carrying out geomechanical risk assessments for natural gas storage in depleted reservoirs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call