Abstract

BackgroundEven in the age of next-generation sequencing (NGS), it has been unclear whether or not cells within a single organism have systematically distinctive genomes. Resolving this question, one of the most basic biological problems associated with DNA mutation rates, can assist efforts to elucidate essential mechanisms of cancer.ResultsUsing genome profiling (GP), we detected considerable systematic variation in genome sequences among cells in individual woody plants. The degree of genome sequence difference (genomic distance) varied systematically from the bottom to the top of the plant, such that the greatest divergence was observed between leaf genomes from uppermost branches and the remainder of the tree. This systematic variation was observed within both Yoshino cherry and Japanese beech trees.ConclusionsAs measured by GP, the genomic distance between two cells within an individual organism was non-negligible, and was correlated with physical distance (i.e., branch-to-branch distance). This phenomenon was assumed to be the result of accumulation of mutations from each cell division, implying that the degree of divergence is proportional to the number of generations separating the two cells.

Highlights

  • Even in the age of next-generation sequencing (NGS), it has been unclear whether or not cells within a single organism have systematically distinctive genomes

  • We used Japanese beech (Fagus crenata) trees to examine whether Genome profiling (GP) was able to reveal if all leaves within a single tree had identical genome sequences (Figures 2 and 3)

  • We analyzed sets of species identification dots, a pivotal GP parameter derived from genome sequences (Figure 2C), that were obtained from genome profiles, specified by both mobility and melting temperature, both of which are determined after calibration and normalization of band patterns by a computer using co-migrating internal references

Read more

Summary

Introduction

Even in the age of next-generation sequencing (NGS), it has been unclear whether or not cells within a single organism have systematically distinctive genomes. Resolving this question, one of the most basic biological problems associated with DNA mutation rates, can assist efforts to elucidate essential mechanisms of cancer. Genome sequences may be epigenetically different between cells, and sporadic differences are sometimes present between cells from different organs [3] It is not clear, whether each cell within an individual organism possesses a systematically different genome sequence. Various breakthroughs have been steadily reshaping our understanding of genomes. These advances include accumulating analyses of whole-genome sequences of

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.