Abstract
Most machine learning (ML) methods produce predictions that are hard or impossible to understand. The black box nature of predictive models obscures potential learning bias and makes it difficult to recognize and trace problems. Moreover, the inability to rationalize model decisions causes reluctance to accept predictions for experimental design. For ML, limited trust in predictions presents a substantial problem and continues to limit its impact in interdisciplinary research, including early-phase drug discovery. As a desirable remedy, approaches from explainable artificial intelligence (XAI) are increasingly applied to shed light on the ML black box and help to rationalize predictions. Among these is the concept of counterfactuals (CFs), which are best understood as test cases with small modifications yielding opposing prediction outcomes (such as different class labels in object classification). For ML applications in medicinal chemistry, for example, compound activity predictions, CFs are particularly intuitive because these hypothetical molecules enable immediate comparisons with actual test compounds that do not require expert ML knowledge and are accessible to practicing chemists. Such comparisons often reveal structural moieties in compounds that determine their predictions and can be further investigated. Herein, we adapt and extend a recently introduced concept for the systematic generation of molecular CFs to multi-task predictions of different classes of protein kinase inhibitors, analyze CFs in detail, rationalize the origins of CF formation in multi-task modeling, and present exemplary explanations of predictions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.