Abstract
Cryptosporidiosis is a major cause of diarrheal disease. The only drug approved for cryptosporidiosis has limited efficacy in high-risk populations. Therefore novel drugs are urgently needed. We have identified several enzymes as potential targets for drug development and we have optimized a rapid method to silence genes in Cryptosporidium. In this study, we knocked down expression of the four selected genes: Actin (Act), Apicomplexan DNA-binding protein (Ap2), Rhomboid protein 1 (Rom 1), and nucleoside diphosphate kinase (NDK). After gene silencing, we evaluated the role of each target on parasite development using in vitro models of excystation, invasion, proliferation, and egress. We showed that silencing of Act, Ap2, NDK, and Rom1 reduced invasion, proliferation, and egress of Cryptosporidium. However, silencing of NDK markedly inhibited Cryptosporidium proliferation (~70%). We used an infection model to evaluate the anticryptosporidial activity of ellagic acid (EA), an NDK inhibitor. We showed that EA (EC50 = 15–30 µM) reduced parasite burden without showing human cell toxicity. Here, we demonstrated the usefulness of a rapid silencing method to identify novel targets for drug development. Because EA is a dietary supplement already approved for human use, this compound should be studied as a potential treatment for cryptosporidiosis.
Highlights
Cryptosporidium is a leading cause of moderate-to-severe diarrhoea in children
Our previous studies revealed the feasibility of silencing Cryptosporidium genes by transfecting oocysts with human Argonaute loaded with ssRNA5
Because the silencing is maintained up to 24 h, we hypothesised that this method could be used to evaluate other key biological processes during the asexual cycle of parasites maintained in HCT-8 cells
Summary
Cryptosporidium is a leading cause of moderate-to-severe diarrhoea in children
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.