Abstract

A major aim of the Human Brain Proteome Project (HBPP) is a better understanding of the molecular etiology and progression of neurodegenerative diseases. Transgenic and loss-of-function mouse mutant lines (MMLs) serve as experimental models. Transcriptome and proteome regulate each other in a complex and controlled way, and their comparative analysis is an essential aspect. As a fundamental study, we have assessed transcript profiles using a microarray containing 21 000 cDNA probes in a series of disease models within the German Mouse Clinic (GMC). Seventeen distinct organs of one adult stage were systematically collected for each submitted MML. Samples for gene expression profiling are individually selected based on conspicuous phenotypes in at least one of 14 GMC phenotype screens or on previous knowledge of the mutant phenotype. By microarray experiments expression patterns of 90 organs from 46 MMLs were analysed, identifying up to 232 differentially expressed genes in 45 organs. Here we present an overview of the results of all MMLs analysed and demonstrate the efficiency of systematic genome-wide expression profiling for the detection of molecular phenotypes in organs of a mammalian model organism. We identify the recurring regulation of particular genes and groups of coexpressed genes in apparently unrelated MMLs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.