Abstract

We consider a continuum model for motility-induced phase separation (MIPS) of active Brownian particles (ABP) (J. Chem. Phys. 142, 224149 (2015)). Using a recently introduced perturbative analysis (Phys. Rev. E 98, 020604(R) (2018)), we show that this continuum model reduces to the classic Cahn-Hilliard (CH) model near the onset of MIPS. This makes MIPS another example of the so-called active phase separation. We further introduce a generalization of the perturbative analysis to the next higher order. This results in a generic higher-order extension of the CH model for active phase separation. Our analysis establishes the mathematical link between the basic mean-field ABP model on the one hand, and the leading order and extended CH models on the other hand. Comparing numerical simulations of the three models, we find that the leading-order CH model agrees nearly perfectly with the full continuum model near the onset of MIPS. We also give estimates of the control parameter beyond which the higher-order corrections become relevant and compare the extended CH model to recent phenomenological models.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call