Abstract

Pyridinemethanolate and oxyquinoline derivatives of previously reported late transition metal-aluminum heterobimetallic complexes containing iridium and rhodium have been synthesized and characterized. A combination of experimental and computational data permits a direct comparison of the electronic effects of each novel aluminum-containing ligand in our library on the late transition metal centers. Alongside electronic data of previously reported oxypyridine bridged systems, we conclude that the addition of a dialkylaluminum(X) (X = anion) fragment does not significantly perturb the electron donor ability of the bridging ligand. Anions bound to the aluminum are also shown to behave similarly. The overall library, thus, suggests that the best predictor of the electron donor ability of an alkylaluminum-containing ligand to a transition metal is the donor power of the bridging ligand.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.