Abstract

Latent heat storage using phase change material (PCM) has become one of the most viable solutions to mediate the climatic deficiency of light weight structures. Instead of expensive field tests, computational modeling can be utilized to evaluate its technical and economic feasibility. This study presents the calculation procedure for eight potential numerical models/schemes implemented in MATLAB/SIMULINK environment. A linearized enthalpy method with hybrid correction scheme is proposed as an improvement to the existing numerical schemes. The models have been validated and further verified against a well-known building simulation program “EnergyPlus”. The models have been analyzed for their computational efficiency and prediction accuracy. Some models are found sensitive to PCM's melting range, for example heat capacity method, but less sensitive to the latent heat. For all models, the time step should be small for accurate results. The iterative and the hybrid correction schemes are found computationally efficient and less sensitive to variations of PCM properties. In addition, a maximum time step of 15min can be used without significant numerical error or changes in computational time. Hence, these two schemes can potentially be implemented into whole building simulation tools for modeling PCMs instead of existing slow and unstable numerical algorithms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.