Abstract
The enzymatic, asymmetric reduction of imines is catalyzed by imine reductases (IREDs), members of the short‐chain dehydrogenase/reductase (SDR) family, and β‐hydroxy acid dehydrogenase (βHAD) variants. Systematic evaluation of the structures and substrate‐binding sites of the three enzyme families has revealed four common principles for imine reduction: structurally conserved cofactor‐binding domains; tyrosine, aspartate, or glutamate as proton donor; at least four characteristic flanking residues that adapt the donor's pK a and polarize the substrate; and a negative electrostatic potential in the substrate‐binding site to stabilize the transition state. As additional catalytically relevant positions, we propose alternative proton donors in IREDs and βHADs as well as proton relays in IREDs, βHADs, and SDRs. The functional role of flanking residues was experimentally confirmed by alanine scanning of the imine‐reducing SDR from Zephyranthes treatiae. Mutating the “gatekeeping” phenylalanine at standard position 200 resulted in a tenfold increase in imine‐reducing activity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Chembiochem : a European journal of chemical biology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.