Abstract

Dissecting site-specific functions of O-glycosylation requires simultaneous identification and quantification of differentially expressed O-glycopeptides by mass spectrometry. However, different dissociation methods have not been systematically compared in their performance in terms of identification, glycosite localization, and quantification with isobaric labeling. Here, we conducted this comparison on highly enriched unlabeled O-glycopeptides with higher-energy collision dissociation (HCD), electron-transfer/collision-induced dissociation (ETciD), and electron transfer/higher-energy collisional dissociation (EThcD), concluding that ETciD and EThcD with optimal supplemental activation resulted in superior identification of glycopeptides and unambiguous site localizations than HCD in a database search by Sequest HT. We later described a pseudo-EThcD strategy that in silico concatenates the electron transfer dissociation spectrum with the paired HCD spectrum acquired sequentially for the same precursor ions, which combines the identification advantage of ETciD/EThcD with the superior reporter ion quality of HCD. We demonstrated its improvements in identification and quantification of isobaric mass tag-labeled O-glycopeptides and showcased the discovery of the specific glycosites of GalNAc transferase 11 (GALNT11) in HepG2 cells.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.