Abstract
A new organic material, 1-methyl-1H-imidazol-3-ium-2,4,6-trinitrobenzene-1,3-bis(olate) (MITB), was synthesized and crystallized by solution growth-slow evaporation technique at ambient temperature. The characteristic functional groups in MITB were identified from FT-IR spectrum. 1H, 13C and DEPT-135 NMR spectroscopic techniques were used to ascertain types of carbons and protons in MITB. The compound crystallizes in the monoclinic system with a space group of P21/c. The electrostatic attraction between anions and cations stabilizes the crystal lattice and the N-H…O and C-H…O hydrogen bonds linking the cations and anions supplement the stable three dimensional networks. The material was thermally stable up to 178 °C. The molecular structure was optimized by Gaussian 09 program at B3LYP/6–311++G(d,p) level of basis set. Hydrogen bonding interactions are responsible for greater hyperpolarizability value of MITB and the value was found to be 34 times greater than that of reference material, urea. HOMO-LUMO, electrostatic potential surface and Mulliken atomic charges were calculated to explore covalent and non covalent interactions present in MITB. Hirshfeld surface analysis was carried out to estimate prominent covalent and non covalent interactions. Dielectric constant and dielectric loss have been determined to find MITB's suitability for optoelectronic applications.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.