Abstract

We investigate the dominant frequency-dependent systematic-error signals (SESs) in the AC Josephson voltage standard. We describe our error measurement technique and a number of methods to reduce the errors. Most importantly, we found that a small change in on-chip wiring significantly reduces the SES, improves SES measurement stability, and enables a suitable bias correction method. We show that direct analog-to-digital converter measurements of the SES of two on-chip Josephson arrays are in very good agreement with errors inferred from AC-DC transfer standard measurements. Finally, we demonstrate that the reduction of the SES using these techniques greatly improves the agreement between the AC-DC differences of the two arrays as well as the absolute AC voltage accuracy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.