Abstract

Abstract The National Centers for Environmental Prediction have generated an 18-yr (1999–2016) subseasonal (weeks 3 and 4) reforecast to support the Climate Prediction Center’s operational mission. To create this reforecast, the subseasonal experiment version of the GEFS was run every Wednesday, initialized at 0000 UTC with 11 members. The Climate Forecast System Reanalysis (CFSR) and Global Data Assimilation System (GDAS) served as the initial analyses for 1999–2010 and 2011–16, respectively. The analysis of 2-m temperature error demonstrates that the model has a strong warm bias over the Northern Hemisphere (NH) and North America (NA) during the warm season. During the boreal winter, the 2-m temperature errors over NA exhibit large interannual and intraseasonal variability. For NA and the NH, weeks 3 and 4 errors are mostly saturated, with initial conditions having a negligible impact. Week 2 errors (day 11) are ~88.6% and 86.6% of their saturated levels, respectively. The 1999–2015 reforecast biases were used to calibrate the 2-m temperature forecasts in 2016, which reduces (increases) the systematic error (forecast skill) for NA, the NH, the Southern Hemisphere, and the tropics, with a maximum benefit for NA during the warm season. Overall, analysis adjustment for the CFSR period makes bias characteristics more consistent with the GDAS period over the NH and tropics and substantially improves the corresponding forecast skill levels. The calibration of the forecast using week 2 bias provides similar skill to using weeks 3 and 4 bias, promising the feasibility of using week 2 bias to calibrate the weeks 3 and 4 forecast. Our results also demonstrate that 10-yr reforecasts are an optimal training period. This is particularly beneficial considering limited computing resources.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.