Abstract

The search for two-dimensional (2D) magnetic materials has attracted a great deal of attention because of the experimental synthesis of 2D CrI3, which has a measured Curie temperature of 45 K. Often times, these monolayers have a higher degree of electron correlation and require more sophisticated methods beyond density functional theory (DFT). Diffusion Monte Carlo (DMC) is a correlated electronic structure method that has been demonstrated to be successful for calculating the electronic and magnetic properties of a wide variety of 2D and bulk systems, since it has a weaker dependence on the Hubbard parameter (U) and density functional. In this study, we designed a workflow that combines DFT +U and DMC in order to treat 2D correlated magnetic systems. We chose monolayer CrX3 (X = I, Br, Cl, F), with a stronger focus on CrI3 and CrBr3, as a case study due to the fact that they have been experimentally realized and have a finite critical temperature. With this DFT+U and DMC workflow and the analytical method of Torelli and Olsen, we estimated a maximum value of 43.56 K for the Tc of CrI3 and 20.78 K for the Tc of CrBr3, in addition to analyzing the spin densities and magnetic properties with DMC and DFT+U. We expect that running this workflow for a well-known material class will aid in the future discovery and characterization of lesser known and more complex correlated 2D magnetic materials.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call