Abstract

Bis(ammonio)alkane compounds carrying lateral phthalimidopropyl substituents on the nitrogen atoms belong to the archetypal muscarinic allosteric agents. Herein, a series of symmetrical and nonsymmetrical compounds was synthesized in which the phthalimide residues were replaced by differently substituted imide moieties. The allosteric action was measured in porcine heart muscarinic M(2) receptors using [(3)H]N-methylscopolamine (NMS) as a ligand for the orthosteric receptor site in equilibrium binding and dissociation experiments. 1,8-Naphthalimido residues conferred an up to 100-fold gain in affinity leading into the low nanomolar range, while the inhibition of NMS binding was maintained. Additional propyl chain methylation was accompanied by an allosteric elevation of orthosteric ligand binding. In general, the gain in allosteric activity achieved by ring variation plus propyl chain methylation on one side of the molecule could not be augmented by symmetrical variations. The elevation of the ligand binding can be explained by different quantitative structure-activity relationships for the affinities to the free and the orthoster-liganded receptor.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.