Abstract
Digit-serial implementation styles are best suited for implementation of digital signal processing systems which require moderate sampling rates. Digit-serial architectures obtained using traditional unfolding techniques cannot be pipelined beyond a certain level because of the presence of feedback loops. In this paper, an alternative approach for the design of the digit-serial architectures is presented based on a novel design methodology. This methodology permits bit-level pipelining of the digit-serial architectures by moving all feedback loops to the last stage of the design. This enables bit-level pipelining of digit-serial architectures, thereby achieving sample speeds close to corresponding bit-parallel multipliers with lower area. This increased sample speed can be traded with reduction in power supply voltage resulting in significant reduction in power consumption. The proposed approach is applied to the design of various multipliers which form the backbone of digital signal processing computations. The results show that for transformed multipliers with smaller digit sizes (/spl les/4), the singly-redundant multiplier consumes the least power, and for larger digit sizes, the type-I multiplier consumes the least power. It is also found that the optimum digit size for least power consumption in type-I and type-III multipliers is /spl sim//spl radic/(2W), where W represents the word length. Among the bit-level pipelined digit-serial multipliers, it is found that the redundant multiplier offers the best choice in terms of both latency and power consumption.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.