Abstract

In this research we investigate a novel sensor concept, which utilizes a standing acoustic wave inside a liquid-filled cavity to probe volumetric properties of a fluid analyte. However, realizing a high-Q cavity resonator is a challenge because of low acoustic impedance contrast between liquids and solids. In our previous studies, we surround the cavity resonator with phononic crystal layers that provide a strong cavity resonance within the phononic band gap. The quality factor drastically depends on the geometry of the metamaterial lattice. Therefore, the main aim of this study is to find an optimal material layout of the solid domain around the cavity by employing topology optimization. We formulate the optimization problem as maximization of the Q-factor of the cavity resonance. We consider the sensor as a fully coupled vibroacoustic system, taking into account material losses and frequency-dependent material properties. Since resonance problems are very sensitive to minor variations in geometry, we apply a gray scale suppression constraint to minimize the influence of geometrical uncertainties and make the optimized designs suitable for additive manufacturing

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.