Abstract
Micro-machining technology is effectively used in modern manufacturing industries. This paper investigates the influence of three different input parameters such as voltage, capacitance and feed rate of micro-wire electrical discharge machining (micro-WEDM) performances of material removal rate (MRR), Kerf width (KW) and surface roughness (SR) using response surface methodology with central composite design (CCD). The experiments are carried out on titanium alloy (Ti–6Al–4V). The machining characteristics are significantly influenced by the electrical and non-electrical parameters in micro-WEDM process. Analysis of variance (ANOVA) was performed to find out the significant influence of each factor. The model developed can use a genetic algorithm (GA) to determine the optimal machining conditions using multi-objective optimization technique. The optimal machining performance of material removal rate, Kerf width and surface roughness are 0.01802 mm3/min, 101.5 μm and 0.789 μm, respectively, using this optimal machining conditions viz. voltage 100 V, capacitance 10 nF and feed rate 15 μm/s.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.