Abstract

The size, shape, and internal structure of monodisperse hematite (α-Fe 2O 3) particles have been controlled systematically on the basis of the gel-sol method recently developed. The size could be controlled in the range from ca. 2 μm to ca. 0.3 μm without degrading the monodispersity by changing the temperature during the preparation of Fe(OH) 3 gel, or to ca. 30 nm by adding different amounts of ultrafine α-Fe 2O 3 seeds. On the other hand, anions such as Cl −, OH −, SO 4 2−, and PO 4 3− have remarkably different effects on the shape and internal structure. In this study in particular, the aspect ratio of the ellipsoidal particles was controlled from 1.1 to 5.2 by shape controllers such as sulfate and phosphate ions. It was found at the same time that sulfate ions yielded polycrystalline particles consisting of much smaller subcrystals of a definite orientation, while phosphate produced nearly monocrystalline particles at a reduced concentration of chloride ions. Also, the decrease in concentration of chloride ions and elevation of aging temperature continuously increased the size of the subcrystals of each particle. Finally, it has been shown that fairly uniform nanosized hematite particles can be prepared in large quantities as an application of a new technique for the preparation of the ultrafine α-Fe 2O 3 seeds. As a result, it has become possible to control the mean size, shape, and internal structure of monodispersed hematite particles independently over a wide range.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.