Abstract

Deep learning and computer vision-based approaches incorporated with the evolution of the relevant technologies of Unmanned Aerial Vehicles (UAVs) and drones have significantly motivated the advancements of disaster management applications. This research studied a classification method for disaster event identification from UAV images that is suitable for disaster monitoring. A Convolution Neural Network (CNN) of GoogleNet models that were pretrained from ImageNet and Place365 datasets was explored to find the appropriate one for fine-tuning to classify the disaster events. In order to get the optimal performance, a systematic configuration for searching the hyperparameters in fine-tuning the CNN model was proposed. The top three hyperparameters that affect the performance, which are the initial learning rate, the number of epochs, and the minibatch size, were systematically set and tuned for each configuration. The proposed approach consists of five stages, during which three types of trials were used to monitor different sets of the hyperparameters. The experimental result revealed that by applying the proposed approach the model performance can increase up to 5%. The optimal performance achieved was 98.77 percent accuracy. For UAV/drone applications, where a small onboard model is preferred, GoogleNet that is quite small in model size and has a good structure for further fine tuning is suitable to deploy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.