Abstract

BackgroundNext-generation sequencing technologies have revolutionized the study of small RNAs (sRNAs) on a genome-wide scale. However, classical sRNA library preparation methods introduce serious bias, mainly during adapter ligation steps. Several types of sRNA including plant microRNAs (miRNA), piwi-interacting RNAs (piRNA) in insects, nematodes and mammals, and small interfering RNAs (siRNA) in insects and plants contain a 2’-O-methyl (2’-OMe) modification at their 3′ terminal nucleotide. This inhibits 3′ adapter ligation and makes library preparation particularly challenging. To reduce bias, the NEBNext kit (New England Biolabs) uses polyethylene glycol (PEG), the NEXTflex V2 kit (BIOO Scientific) uses both randomised adapters and PEG, and the novel SMARTer (Clontech) and CATS (Diagenode) kits avoid ligation altogether. Here we compared these methods with Illumina’s classical TruSeq protocol regarding the detection of normal and 2’ OMe RNAs. In addition, we modified the TruSeq and NEXTflex protocols to identify conditions that improve performance.ResultsAmong the five kits tested with their respective standard protocols, the SMARTer and CATS kits had the lowest levels of bias but also had a strong formation of side products, and as a result performed relatively poorly with biological samples; NEXTflex detected the largest numbers of different miRNAs. The use of a novel type of randomised adapters called MidRand-Like (MRL) adapters and PEG improved the detection of 2’ OMe RNAs both in the TruSeq as well as in the NEXTflex protocol.ConclusionsWhile it is commonly accepted that biases in sRNA library preparation protocols are mainly due to adapter ligation steps, the ligation-free protocols were not the best performing methods. Our modified versions of the TruSeq and NEXTflex protocols provide an improved tool for the study of 2’ OMe RNAs.

Highlights

  • Next-generation sequencing technologies have revolutionized the study of small RNAs on a genome-wide scale

  • Experimental strategy To test the performance of the various kits, we designed a pool of six synthetic Small RNA (sRNA), supplemented with random 21 nt RNAs to create a complex mixture

  • We determined the proportion of sequences corresponding to RNAs(OMe)1–6 for each protocol and we tested their performance regarding the following three parameters: (1) sequence bias, (2) 2’-OMe bias, and (3) formation of side products

Read more

Summary

Introduction

Next-generation sequencing technologies have revolutionized the study of small RNAs (sRNAs) on a genome-wide scale. Several types of sRNA including plant microRNAs (miRNA), piwi-interacting RNAs (piRNA) in insects, nematodes and mammals, and small interfering RNAs (siRNA) in insects and plants contain a 2’-O-methyl (2’-OMe) modification at their 3′ terminal nucleotide. This inhibits 3′ adapter ligation and makes library preparation challenging. The NEBNext kit (New England Biolabs) uses polyethylene glycol (PEG), the NEXTflex V2 kit (BIOO Scientific) uses both randomised adapters and PEG, and the novel SMARTer (Clontech) and CATS (Diagenode) kits avoid ligation altogether We compared these methods with Illumina’s classical TruSeq protocol regarding the detection of normal and 2’ OMe RNAs. In addition, we modified the TruSeq and NEXTflex protocols to identify conditions that improve performance. NGS approaches have some disadvantages, such as the

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call