Abstract

Graphene, a two-dimensional material with extraordinary electrical, thermal, and elastic performance, is a potential candidate for future technologies. However, the superior properties of graphene have not yet been realized for graphenederived macroscopic structures such as graphene fibers. In this study, we systematically investigated the temperature (T)-dependent transport and thermoelectric properties of graphene fiber, including the thermal conductivity (λ), electrical conductivity (σ), and Seebeck coefficient (S). λ increases from 45.8 to 149.7 W·m–1·K–1 and then decreases as T increases from 80 to 290 K, indicating the boundary-scattering and three-phonon Umklapp scattering processes. σ increases with T from 7.1 × 104 to 1.18 × 105 S·m–1, which can be best explained by the hopping mechanism. S ranges from–3.9 to 0.8 μV·K–1 and undergoes a sign transition at approximately 100 K.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call