Abstract

Psychedelic compounds have gained renewed interest for their potential therapeutic applications, but their metabolism and effects on complex biological systems remain poorly understood. Here, we present a systematic characterization of Lysergic Acid Diethylamide (LSD) metabolites in the model organism Caenorhabditis elegans using state-of-the-art analytical techniques. By employing ultra-high performance liquid chromatography coupled with high-resolution tandem mass spectrometry, we putatively identified a range of LSD metabolites, shedding light on their metabolic pathways and offering insights into their pharmacokinetics. Our study demonstrates the suitability of Caenorhabditis elegans as a valuable model system for investigating the metabolism of psychedelic compounds and provides a foundation for further research on the therapeutic potential of LSD.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call