Abstract

This work presents a three-dimensional, steady-state, non-isothermal model of a high-temperature polymer-electrolyte-membrane fuel cell (HTPEMFC) using a phosphoric acid-doped polybenzimidazole (PBI/H3PO4) sol–gel membrane. The model accounts for the gold-plated copper current collector plates, the bipolar plates, all gas flow channels (flow-field), the gas diffusion layers, the reaction layers, and the membrane. Electrochemical reactions are modeled using an agglomerate approach and include the gas diffusivity and the gas solubility. The conductivity of the membrane is modeled using the Arrhenius equation to describe the temperature dependence. Finite elements are used to discretize all computational subdomains, and a commercially available code is used to solve the problem. The predicted values are compared to typical operating conditions, and a good agreement is found. The current density, the solid- and fluid-(gas)-phase temperatures and other quantities are analyzed throughout the computational subdomains. It was observed that the Arrhenius approach is valid in a certain temperature range and may overpredict the PBI/H3PO4 sol–gel membrane conductivity at higher solid-phase temperatures. Moreover, it is shown how the fluid-(gas)-phase temperature influences the solid-phase temperature and the current density distribution. Concrete values are deduced from the simulations and discussed according to experimental test.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.