Abstract

Web applications, such as collaborative editors that allow multiple clients to concurrently interact on a shared resource, are difficult to implement correctly. Existing techniques for analyzing concurrent software do not scale to such complex systems or do not consider multiple interacting clients. This paper presents Simian, the first fully automated technique for systematically analyzing multi-client web applications. Naively exploring all possible interactions between a set of clients of such applications is practically infeasible. Simian obtains scalability for real-world applications by using a two-phase black-box approach. The application code remains unknown to the analysis and is first explored systematically using a single client to infer potential conflicts between client events triggered in a specific context. The second phase synthesizes multi-client interactions targeted at triggering misbehavior that may result from the potential conflicts, and reports an inconsistency if the clients do not converge to a consistent state. We evaluate the analysis on three widely used systems, Google Docs, Firepad, and ownCloud Documents, where it reports a variety of inconsistencies, such as incorrect formatting and misplaced text fragments. Moreover, we find that the two-phase approach runs 10x faster compared to exhaustive exploration, making systematic analysis practically applicable.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.