Abstract

The photostability of polymeric materials is crucial for their applicability, especially under potentially harsh environmental conditions. In the current study, the influence of methyl-substitution on the photochemical stability of photoinitiator-derived benzoyl end groups is systematically investigated by a combination of pulsed-laser polymerization and subsequent size exclusion chromatography coupled with electrospray ionization mass spectrometry (PLP–SEC–ESI–MS), chemically induced dynamic nuclear polarization–nuclear magnetic resonance spectroscopy (CIDNP–NMR), and density functional theory (DFT) calculations. Poly(methyl methacrylate)s (pMMA) were synthesized employing benzoin-type photoinitiators with systematically substituted benzoyl moieties (i.e., 2-methylbenzoin, 3-methylbenzoin, 4-methylbenzoin, 2,4-dimethylbenzoin, 2,6-dimethylbenzoin, 2,4,6-trimethylbenzoin, 2,3,5,6-tetramethylbenzoin, and 2,3,4,5,6-pentamethylbenzoin). Photoinduced cleavage of the photoinitiator-based end group (irradiation...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.