Abstract

RNA-sequencing (RNA-seq) technology has emerged as the preferred method for quantification of gene and isoform expression. Numerous RNA-seq quantification tools have been proposed and developed, bringing us closer to developing expression-based diagnostic tests based on this technology. However, because of the rapidly evolving technologies and algorithms, it is essential to establish a systematic method for evaluating the quality of RNA-seq quantification. We investigate how different RNA-seq experimental designs (i.e., variations in sequencing depth and read length) affect various quantification algorithms (i.e., HTSeq, Cufflinks, and MISO). Using simulated data, we evaluate the quantification tools based on four metrics, namely: (1) total number of usable fragments for quantification, (2) detection of genes and isoforms, (3) correlation, and (4) accuracy of expression quantification with respect to the ground truth. Results show that Cufflinks is able to use the largest number of fragments for quantification, leading to better detection of genes and isoforms. However, HTSeq produces more accurate expression estimates. Moreover, each quantification algorithm is affected differently by varying sequencing depth and read length, suggesting that the selection of quantification algorithms should be application-dependent.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call