Abstract

There are various methods to help restore an image from noisy distortions. Each technique has its advantages and disadvantages. Selecting the appropriate method plays a major role in getting the desired image. Noise removal or noise reduction can be done on an image by linear or nonlinear filtering. The more popular linear technique is based on average (on mean) linear operators. Denoising via linear filters normally does not perform satisfactorily since both noise and edges contain high frequencies. Therefore, any practical denoising model has to be nonlinear. In this work, we introduce and analyze a new class of nonlinear SISO-filters that have their roots in aggregation operator theory. We show that a large body of non-linear filters proposed to date constitute a proper subset of aggregation filters.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.