Abstract

BackgroundAlthough omic-based discovery approaches can provide powerful tools for biomarker identification, several reservations have been raised regarding the clinical applicability of gene expression studies, such as their prohibitive cost. However, the limited availability of antibodies is a key barrier to the development of a lower cost alternative, namely a discrete collection of immunohistochemistry (IHC)-based biomarkers. The aim of this study was to use a systematic approach to generate and screen affinity-purified, mono-specific antibodies targeting progression-related biomarkers, with a view towards developing a clinically applicable IHC-based prognostic biomarker panel for breast cancer.MethodsWe examined both in-house and publicly available breast cancer DNA microarray datasets relating to invasion and metastasis, thus identifying a cohort of candidate progression-associated biomarkers. Of these, 18 antibodies were released for extended analysis. Validated antibodies were screened against a tissue microarray (TMA) constructed from a cohort of consecutive breast cancer cases (n = 512) to test the immunohistochemical surrogate signature.ResultsAntibody screening revealed 3 candidate prognostic markers: the cell cycle regulator, Anillin (ANLN); the mitogen-activated protein kinase, PDZ-Binding Kinase (PBK); and the estrogen response gene, PDZ-Domain Containing 1 (PDZK1). Increased expression of ANLN and PBK was associated with poor prognosis, whilst increased expression of PDZK1 was associated with good prognosis. A 3-marker signature comprised of high PBK, high ANLN and low PDZK1 expression was associated with decreased recurrence-free survival (p < 0.001) and breast cancer-specific survival (BCSS) (p < 0.001). This novel signature was associated with high tumour grade (p < 0.001), positive nodal status (p = 0.029), ER-negativity (p = 0.006), Her2-positivity (p = 0.036) and high Ki67 status (p < 0.001). However, multivariate Cox regression demonstrated that the signature was not a significant predictor of BCSS (HR = 6.38; 95% CI = 0.79-51.26, p = 0.082).ConclusionsWe have developed a comprehensive biomarker pathway that extends from discovery through to validation on a TMA platform. This proof-of-concept study has resulted in the identification of a novel 3-protein prognostic panel. Additional biochemical markers, interrogated using this high-throughput platform, may further augment the prognostic accuracy of this panel to a point that may allow implementation into routine clinical practice.

Highlights

  • Omic-based discovery approaches can provide powerful tools for biomarker identification, several reservations have been raised regarding the clinical applicability of gene expression studies, such as their prohibitive cost

  • We considered the top genes associated with good prognosis and the top genes associated with poor prognosis

  • Another 25 genes of interest were selected from a transcriptomic study of ductal carcinoma in situ (DCIS) to invasive ductal carcinoma (IDC) progression, with a particular focus on transcripts that were up-regulated in the invasive component [26] (Additional file 1: Table S1)

Read more

Summary

Introduction

Omic-based discovery approaches can provide powerful tools for biomarker identification, several reservations have been raised regarding the clinical applicability of gene expression studies, such as their prohibitive cost. Current treatment guidelines combine traditional prognostic factors (stage, tumour size, histologic grade, nodal status) with estrogen receptor (ER), progesterone receptor (PR) and human epidermal growth factor receptor 2 (Her2) expression status. These conventional prognostic algorithms are insufficient to capture the biologic diversity of breast cancer and impede effective tailoring of individualised treatment strategies [2]. Molecular profiling of cancer tissues has aided the development of targeted therapies, improved our understanding of treatment resistance, and helps better predict patient prognosis This knowledge has allowed personalised breast cancer therapeutic regimens to become an achievable goal

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call