Abstract
Digestive system tumors, which mainly include esophagus, stomach, colorectum, liver, pancreas, bile duct, and some other tumors, often have a poor prognosis. N6-methyladenosine (m6A) has critical functions in development and tumorigenesis and may help improve the molecular mechanisms of digestive system tumors. However, current understanding of the reconstitution of m6A in digestive system tumors is far from comprehensive. Herein, this study systematically analyzed multi-layered genomic characteristics and clinical relevance of m6A regulators in 1906 patients involving seven digestive system tumor types. We discovered that m6A regulators showed extensive genetic changes and highly consistent expression regulation. The m6A expression was closely related to the activity of cancer pathways. At the same time, we also identified m6A regulators significantly related to the common cancer pathways of digestive system tumors and specific cancer pathways of digestive tract and digestive glands. These cancer pathways may explain the prognostic differences of patients with digestive tract tumors. In addition, m6A regulators demonstrated strong potential in prognostic stratification and drug development, especially in multiple research cohorts on pancreatic cancer, pointing to a strong prognostic stratification capability of m6A regulators. Finally, a m6A scoring model significantly related to highly active ubiquitin-mediated proteolysis, mismatch repair, cell cycle, ebasal transcription factors was constructed and had a strong prognostic stratification ability in digestive gland tumors. The score showed a significant negative correlation with the tumor immune microenvironment. This study demonstrated that the similarities and difference of the action mechanism m6A regulators in the digestive tract and digestive gland tumor progression could guide potential drug development.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.