Abstract
Microtubules are ubiquitous cytoskeletal polymers with essential functions in chromosome segregation, intracellular transport, and cellular morphogenesis. End-binding proteins (EBs) form the nodes of intricate microtubule plus-end interaction networks. Which EB binding partners are most critical for cell division and how cells organize a microtubule cytoskeleton in the absence of an EB protein are open questions. Here, we perform a detailed analysis of deletion and point mutants of the budding yeast EB protein Bim1. We demonstrate that Bim1 executes its key mitotic functions as part of two cargo complexes-Bim1-Kar9 in the cytoplasm and Bim1-Bik1-Cik1-Kar3 in the nucleus. The latter complex acts during initial metaphase spindle assembly and supports tension establishment and sister chromatid biorientation. We demonstrate that engineered plus-end targeting of Cik1-Kar3 and overexpression of the microtubule crosslinker Ase1 restore distinct aspects of the bim1Δ spindle phenotype. In addition to defining key Bim1-cargo complexes our study also characterizes redundant mechanisms that allow cells to proliferate in the absence of Bim1.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.