Abstract

Rodent dams seek and gather scattered pups back to the nest (pup retrieval), an essential aspect of maternal care. Systematic analysis of the dynamic sequences of goal-related movements that comprise the entire behavioural sequence, which would be ultimately essential for understanding the underlying neurobiology, is not well-characterized. Here, we present such analysis across 3days in alloparental female mice (Surrogates or Sur) of two genotypes; Mecp2Heterozygotes (Het), a female mouse model for Rett syndrome and their wild type (WT) siblings. We analysed CBA/CaJ and C57BL/6J WT surrogates for within-strain comparisons. Frame-by-frame analysis over different phases was performed manually using DataVyu software. We previously showed that surrogate Het are inefficient at pup retrieval, by end-point analysis such as latency index and errors. Here, the sequence of searching, pup-approach and successful retrieval streamlines over days for WT, while Het exhibits variations in this pattern. Goal-related movements between Het and WT are similar in other phases, suggesting context-driven atypical patterns in Het during the pup retrieval phase. We identified proximal pup approach and pup grooming as atypical tactile interactions between pups and Het. Day-by-day analysis showed dynamic changes in goal-related movements in individual animals across genotypes and strains. Overall, our approach (1) highlights natural variation in individual mice on different days, (2) establishes a "gold-standard" manually curated dataset to help build behavioural repertoires using machine learning approaches, and (3) suggests atypical tactile sensory processing and possible regression in a female mouse model for Rett syndrome.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.