Abstract

We attempt to identify all microlensing parallax events for which the parallax fit improves \Delta\chi^2 > 100 relative to a standard microlensing model. We outline a procedure to identify three types of discrete degeneracies (including a new one that we dub the ``ecliptic degeneracy'') and find many new degenerate solutions in 16 previously published and 6 unpublished events. Only four events have one unique solution and the other 18 events have a total of 44 solutions. Our sample includes three previously identified black-hole (BH) candidates. We consider the newly discovered degenerate solutions and determine the relative likelihood that each of these is a BH. We find the lens of event MACHO-99-BLG-22 is a strong BH candidate (78%), event MACHO-96-BLG-5 is a marginal BH candidate (37%), and MACHO-98-BLG-6 is a weak BH candidate (2.2%). The lens of event OGLE-2003-BLG-84 may be a Jupiter-mass free-floating planet candidate based on a weak 3 sigma detection of finite-source effects. We find that event MACHO-179-A is a brown dwarf candidate within ~100 pc of the Sun, mostly due to its very small projected Einstein radius, \tilde r_E = 0.23+-0.05 AU. As expected, these microlensing parallax events are biased toward lenses that are heavier and closer than average. These events were examined for xallarap (or binary-source motion), which can mimic parallax. We find that 23% of these events are strongly affected by xallarap.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.