Abstract

Currently, most detailed chemical kinetic mechanisms for combustion are still not comprehensive enough and update of key reaction rate is still required to improve the combustion mechanisms. The development of systematic mechanism reduction methods have made significant progress, and have greatly facilitated analysis of the reaction mechanisms and identification of important species and key reactions. In the present work, time-integrated element flux analysis is employed to analyze a skeletal combustion mechanism of a tri-component kerosene surrogate mixture, consisting of n-decane, n-propylcyclohexane, and n-propylbenzene. The results of element flux analysis indicate that major reaction pathways for each component in the surrogate model are captured by the skeletal mechanism compared with the detailed mechanism. After that, sensitivity analysis (SA) and chemical explosive mode analysis (CEMA) are conducted to identify the dominant ignition chemistry. The SA and CEMA results demonstrate that the ignition of n-decane and n-propylcyclohexane is sensitive only to the oxidation chemistry of H2/CO and C1–C4 small hydrocarbons, while the ignition of n-propylbenzene is very sensitive to the initial reactions of n-propylbenzene and related aromatic intermediates. This demonstrates that the hierarchic structure should be maintained in the reduction of detailed mechanism of substituted aromatic fuels. The skeletal mechanism is further reduced by combining the computational singular perturbation (CSP) method and quasi steady state approximation (QSSA). A 34-species global reduced mechanism is obtained and validated over a wide range of parameters for ignition.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call