Abstract
Plant-specific NAC proteins are one of the largest families of transcription factors in plants, and members of this family have been characterized with roles in the regulation of diverse biological processes, including development and stress responses. In the present study, we identified 101 putative NAC domain-encoding genes (BdNACs) through systematic sequence analysis in Brachypodium distachyon, a new model plant of family Poaceae. BdNAC proteins were phylogenetically clustered into 13 groups, and each group possesses similar motif compositions. Phylogenetic analysis using known stress-related NACs from Arabidopsis and rice as query sequences identified 18 BdNACs as putative stress-responsive genes. In silico promoter analysis showed that almost all BdNAC genes contain putative stress-related cis-elements in their promoter regions. Expression profile of BdNAC genes in response to abiotic stresses and phytohormones was analyzed by quantitative real-time RT-PCR. Several putative stress-responsive BdNAC genes, including BdNAC003 and BdNAC044 which is ortholog of known stress-responsive rice gene SNAC1 and SNAC2, respectively, were highly regulated by multiple abiotic stresses and stress-related phytohormone treatments. Taken together, our results presented here would be helpful in laying the foundation for understanding of the complex mechanisms of NAC mediated abiotic stress signaling transduction pathways in B. distachyon.
Highlights
Plants growth and productivity are frequently threatened by various environmental stresses for their sessile nature
The NAC proteins in B. distachyon were identified by keyword, Hidden Markov Model (HMM) profile and BLAST searches against B. distachyon annotation (MIPS/JGI v1.2) database at Phytozome v9.1
BLASTP searches of the predicted B. distachyon protein database with known NAC proteins from Arabidopsis and rice resulted in 95 non-redundant gene loci, and 48 of them were overlapped with the keyword search result
Summary
Plants growth and productivity are frequently threatened by various environmental stresses for their sessile nature. To cope with these stresses, plants have evolved a range of physiological and biochemical responses [1] and a complex of signaling transduction pathways [2, 3]. Transcription factors (TFs) are one of the critical regulatory proteins involved in abiotic stress responses and play important roles downstream of stress signaling cascades. TFs regulate the expression of a subset of stress-related genes and modulate the plant resistance to environmental stresses.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.