Abstract

Computational methods such as molecular docking or molecular dynamics (MD) simulations have been developed to simulate and explore the interactions between biomolecules. However, the interactions obtained using these methods are difficult to analyse and evaluate. Interaction fingerprints (IFPs) have been proposed to derive interactions from static 3D coordinates and transform them into 1D bit vectors. More recently, the concept has been applied to derive IFPs from MD simulations, which adds a layer of complexity by adding the temporal motion and dynamics of a system. As a result, many IFPs are obtained from one MD simulation, resulting in a large number of individual IFPs that are difficult to analyse compared to IFPs derived from static 3D structures. Scientific contribution: We introduce a new method to systematically aggregate IFPs derived from MD simulation data. In addition, we propose visualisations to effectively analyse and compare IFPs derived from MD simulation data to account for the temporal evolution of interactions and to compare IFPs across different MD simulations. This has been implemented as a freely available Python library and can therefore be easily adopted by other researchers and to different MD simulation datasets.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call