Abstract

Systematic ab initio gradient calculation of molecular geometries, force constants, and dipole moment derivatives is described. A new basis set, denoted 4-21, is presented for first-row atoms. It is nearly equivalent to the 4-31G set but requires less computational effort. Completely optimized Hartree-Fock geometries of 18 molecules are compared using several basis sets, with and without polarization functions. The question of the best representation of molecular force fields is discussed, and a set of standardized internal coordinates is suggested for future work. Quadratic and the most important cubic force constants and dipole moment derivatives of first-row hydrides are calculated using the 4-21 basis set, and the results are compared with those from other basis sets, including near-Hartree-Fock ones. Force-field calculations on larger molecules with the 4-21 basis are summarized. A general formulation of the rotational correction to dipole moment derivatives is given.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.