Abstract
This research aims to examine the risk in the technology design of fast breeder reactors while the development depends on safety considerations. The project explored the variables, which could affect positively the expected average fuel burn-up, breeding ratio, and decay heat removal. That is accomplished using features such as guard vessels and elevated pipe routing to prevent the cracked state of both core components and fuel cladding interface conditions. So, the cracked region of fuel was detected by thermal-hydraulic analysis. We used ZrFeCr alloys to estimating of the rise in fuel cladding and coolant that can be incorporated in the design ZrFeCr alloys to uniform corrosion in temperature and 10.3 Mpa pressure. Fast creep of the reactor vessel during the coolant heat-up transient is another issue to be considered corrosion resistance of structural material can be achieved by controlling oxygen content in steel alloy. In this trend, S4337 S5140 steels are wide and can be used in future fossil power plants because of their excellent high-temperature strength.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.