Abstract
The static transverse behavior of two pultruded GFRP deck systems with trapezoidal (DS) and triangular (AS) cell cross-sectional geometry was experimentally investigated in order to study their transverse in-plane shear stiffness. Symmetric three-point bending experiments up to failure were performed on 200-mm-wide beams. Their stiffness, strength and failure modes were compared. Different load transfer mechanisms were found in the DS (frame-dominated) and AS (truss-governed) systems depending on the cell geometry. The DS beams exhibited a lower apparent bending stiffness (24–30 times less) and degree of composite action between the flanges (14–17 times less) than the AS beams. These dissimilarities were attributed to the lower transverse in-plane shear stiffness provided by the trapezoidal core than by the triangular core. The low bound values for both system in-plane shear moduli were estimated from the experimental deflection results. The system in-plane shear modulus of the DS beams represented approximately 2–3% of that of the AS beams.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.