Abstract

On-board hydrogen storage systems employing high-pressure metal hydrides promise advantages including high volumetric capacities and cold start capability. In this paper, we discuss the development of a system simulation model in Matlab/Simulink platform. Transient equations for mass balance and energy balance are presented. Appropriate kinetic expressions are used for the absorption/desorption reactions for the Ti 1.1CrMn metal hydride. During refueling, the bed is cooled by passing a coolant through tubes embedded within the bed while during driving, the bed is heated by pumping the radiator fluid through same set of tubes. The feasibility of using a high-pressure metal hydride storage system for automotive applications is discussed. Drive cycle simulations for a fuel cell vehicle are performed and detailed results are presented.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call