Abstract

Providing real-time multimedia applications over wireless multi-hop networks is a challenging problem because the wireless channels are highly sensitive to delay, interference and topology changes. Multiple description coding (MDC), as a new emerging error-resilient technique, has been widely used recently in wireless video transmission. Its fundamental principle is to generate multiple correlated descriptions such that each description approximates the source information with a certain level of fidelity. Inevitably, MDC introduces many description streams which may influence each other and thus, reasonable system scheduling is needed to provide a satisfied video quality. The novelty of this work is to investigate the optimal distributed scheduling for multiple competing MDC streams in a resource-limited wireless multi-hop network. This is achieved by joint optimization of MDC, rate control and multipath routing. Two joint optimal algorithms, namely a distributed rate control and routing (DRCR) and a simplified DRCR algorithm, are proposed to solve this problem with constraints that arise from the multiple description streams among multiple users via multiple paths. Both algorithms are designed in a distributed manner that is amenable to on-line implementation for wireless networks. Theoretical analysis and simulation results are provided which demonstrate the effectiveness of our proposed joint schemes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call