Abstract

In this paper we study the approximation of stable linear time-invariant systems for the Paley–Wiener space \(\mathcal {PW}_{\pi }^2\), i.e., the set of bandlimited functions with finite \(L^2\)-norm, by convolution sums. It is possible to use either, the convolution sum where the time variable is in the argument of the bandlimited impulse response, or the convolution sum where the time variable is in the argument of the function, as an approximation process. In addition to the pointwise and uniform convergence behavior, the convergence behavior in the norm of the considered function space, i.e. the \(L^2\)-norm in our case, is important. While it is well-known that both convolution sums converge uniformly on the whole real axis, the \(L^2\)-norm of the second convolution sum can be divergent for certain functions and systems. We show that the there exist an infinite dimensional closed subspace of functions and an infinite dimensional closed subspace of systems, such that for any pair of function and system from these two sets, we have norm divergence.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.