Abstract

For the past two decades, nature‐inspired optimization algorithms have gained enormous popularity among the researchers. On the other hand, complex system reliability optimization problems, which are nonlinear programming problems in nature, are proved to be non‐deterministic polynomial‐time hard (NP‐hard) from a computational point of view. In this work, few complex reliability optimization problems are solved by using a very recent nature‐inspired metaheuristic called gray wolf optimizer (GWO) algorithm. GWO mimics the chasing, hunting, and the hierarchal behavior of gray wolves. The results obtained by GWO are compared with those of some recent and popular metaheuristic such as the cuckoo search algorithm, particle swarm optimization, ant colony optimization, and simulated annealing. This comparative study shows that the results obtained by GWO are either superior or competitive to the results that have been obtained by these well‐known metaheuristic mentioned earlier. Copyright © 2016 John Wiley & Sons, Ltd.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.