Abstract

This paper investigates the Bayesian melding method (BMM) for system reliability analysis by effectively integrating various available sources of expert knowledge and data at both subsystem and system levels. The integration of multiple priors is investigated under both linear and geometric pooling methods. The aggregated system prior distributions using various pooling methods including the BMM are evaluated and compared. Based on these integrated and updated prior distributions and three scenarios of data availability from a system and/or subsystems, methods for posterior system reliability inference are proposed. Computational challenges for posterior inferences using the sophisticated BMM are addressed using the adaptive sampling importance re-sampling (SIR) method. A numerical example with simulation results illustrates the applications of the proposed methods and provides insights for system reliability analysis using multilevel information.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.