Abstract

The stability of excavation in unsaturated soil is closely related to the variation of soil properties and matric suction. Determination of different failure modes and identifying the contribution of each one in an unsaturated soldier-piled excavation are the vital aspects of system reliability analysis. To address these issues, this paper provided a stochastic framework with a random elasto-plastic finite element–based program coded in MATLAB to evaluate the reliability indices of individual failure modes with considering the inherent uncertainty of real site soil properties and unsaturated state. In the next step, the sequential compounding method (SCM) was utilized to obtain the system reliability index by compounding the reliability indices of individual failure modes. Numerical results of a case study showed that in all failure modes, considering unsaturated state not only increases the mean value of factor of safety (FS) but also decreases the related standard deviation, which can be counted as a goal of reliability analysis. Among the reliability indices of the components, the most critical one is attributed to the lateral displacement. Furthermore, the safety ratio concerning the shear force has the maximum reliability index compared to the others. Moreover, based on the coefficient of variation (COV) of the components, it was found that the uncertainty of the soil parameters has the most significant effect on the global safety factor of the excavation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.