Abstract

Based on the nonlinear Barton-Bandis (B–B) failure criterion, this study considers the system reliability of rock wedge stability under the pseudo-static seismic load. The failure probability (Pf) of the system is calculated based on the Monte–Carlo method when considering parameter correlation and variability. Parameter analysis and sensitivity analysis are carried out to explore the influence of parameters on reliability. The relationships among the failure probability, safety factor (Fs), and variation coefficient are explored, and then stability probability curves of the rock wedge under the pseudo-static seismic load are drawn. The results show that the parameter correlation of the B–B failure criterion has a significant influence on the failure probability, but correlation increases system reliability or decreases system reliability affected by other parameters. Under the pseudo-static seismic action, sliding on both planes is the main failure mode of wedge system. In addition, the parameters with relatively high sensitivity are two angles related to the joint dip. When the coefficient of variation is consistent, the probability of system failure is a function of the safety factor.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.