Abstract
Various methods are proposed for license plate recognition, but none of them are universal. Some common methods for license plate localization, character extraction, and recognition are analyzed. Then a system is proposed to recognize the Bahamian license plate with touching characters. A vertical edge-based method with a modified sliding window technique is used to locate the license plate, and a machine learning process is used to trim the region. The located license plate is rectified by using the minimum enclosing box and the stroke width value. Then the vertical projection and pairs of extreme points are combined to segment the characters. Finally, a deep learning method is used to recognize the characters. 2996 images are experimented on and the total recognition accuracy achieves 83.29%. Typical methods of each stage are implemented to compare with the proposed methods. In addition, the proposed system is experimented on a public dataset to show the generalization ability of the system. The experimental results show that the proposed system performs better than the other methods and is able to be used in a real-time application.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.