Abstract
We theoretically study the group-delay characteristics of a silicon microring resonator based on the coupled mode theory, and experimentally demonstrate error-free operations of an on-chip delay line using a silicon-on-insulator (SOI) microring resonator with a 20-mum radius. Four signals of different modulation formats are examined at 5 Gb/s, including return-to-zero (RZ), carrier-suppressed return-to-zero (CSRZ), return-to-zero duobinary (RZ-DB), and return-to-zero alternate-mark-inversion (RZ-AMI). Bit error rate (BER) measurements show that the maximal delay times with error-free operations are 80, 95, 110, and 65 ps, respectively, corresponding to a fractional group delay of ~0.4, ~0.5, ~0.55, and ~0.35. The differences in delay and signal degradations have been investigated based on the signal spectra and pattern dependences. Although the delays are demonstrated in a single ring resonator, the analysis is applicable in slow-light resonance structures such as all-pass filters (APF) and coupled resonator optical waveguides (CROW).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.