Abstract
Polymer-based additive manufacturing (AM) gathers a great deal of interest with regard to standardization and implementation in mass production. A new methodology for the system and process capabilities analysis in additive manufacturing, using statistical quality tools for production management, is proposed. A large sample of small specimens of circular shape was manufactured of photopolymer resins using polymer jetting (PolyJet) technology. Two critical geometrical features of the specimen were investigated. The variability of the measurement system was determined by Gage repeatability and reproducibility (Gage R&R) methodology. Machine and process capabilities were performed in relation to the defined tolerance limits and the results were analyzed based on the requirements from the statistical process control. The results showed that the EDEN 350 system capability and PolyJet process capability enables obtaining capability indices over 1.67 within the capable tolerance interval of 0.22 mm. Furthermore, PolyJet technology depositing thin layers of resins droplets of 0.016 mm allows for manufacturing in a short time of a high volume of parts for mass production with a tolerance matching the ISO 286 IT9 grade for radial dimension and IT10 grade for linear dimensions on the Z-axis, respectively. Using microscopy analysis some results were explained and validated from the capability study.
Highlights
The applications of additive manufacturing (AM) to industry have developed from rapid prototyping (RP) and rapid tooling to rapid manufacturing (RM)
This paper contributes to the characterization of the dimensional accuracy, repeatability, system performance, and process capability of polymer-based AM processes and systems
The methodology used for quality control in additive manufacturing allows the polymer-based AM processes to be implemented in production
Summary
The applications of additive manufacturing (AM) to industry have developed from rapid prototyping (RP) and rapid tooling to rapid manufacturing (RM). Additive manufacturing will revolutionize future manufacturing as a key technology in the implementation of the new industrial revolution, Industry 4.0 [1]. The AM processes defined by ISO/ASTM 52900-15 [2] standard are starting to find applications in industry. An industrial additive manufacturing system [3] should have six main components: design, pre-processing, manufacture, post-processing, quality control, and maintenance. The performance of AM systems is an important task to be estimated for the production of parts in an industrial process. There are many AM processes [2] and technologies associated with them, as follows:
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.